@ÇÁ·¢Å»


@ÇÁ·¢Å» ¾ÆÆ®

ÁÖ¿ª(ñ²æ¶) Ä«¿À½º
ÇÁ·¢Å»
ÇÁ·¢Å» ¾ÆÆ®
ÇÁ·¢Å» ¹«ºñ
°¶·¯¸®¥°
°¶·¯¸®¥±
°¶·¯¸®¥²

@ÇÁ·¢Å» ¾ÆÆ®

ÇÁ·¢Å» °ø½Ä(Formulas)¥°
ÇÁ·¢Å» °ø½Ä(Formulas)¥±
¿ì¸® °çÀÇ ÇÁ·¢Å»
Çö´ë Ãß»ó¹Ì¼ú
Âü°í ÀÚ·á
History

À̸ÞÀÏ Email

±è¸¸Å ±³¼öÀÇ À̸§ À̾߱â








ÇÁ·¢Å» °ø½Ä(Formulas)¥°

ÇÁ·¢Å» °ø½Ä(Formulas)¥°


K I M   M A N T A E ' S   G A L L E R Y     ¡¤     N a m e S t o r y . k r     ¡¤     a F r a c t a l . c o m  
Artist
  @ÇÁ·¢Å» 2005-10-08 12:55:18 | Hit : 4899
Subject   LORENZ 3D1
File No.
   lorenz3d1.gif (23.2 KB) Download : 62

LORENZ 3D1

Lorenz one lobe attractor - orbit in three dimensions.
    The original formulas were developed by Rick Miranda and Emily Stone.
      z(0) = y(0) = z(0) = 1; norm = sqrt(x(n)^2 + y(n)^2)
      x(n+1) = x(n) + (-a*dt-dt)*x(n) + (a*dt-b*dt)*y(n)
         + (dt-a*dt)*norm + y(n)*dt*z(n)
      y(n+1) = y(n) + (b*dt-a*dt)*x(n) - (a*dt+dt)*y(n)
         + (b*dt+a*dt)*norm - x(n)*dt*z(n) - norm*z(n)*dt
      z(n+1) = z(n) +(y(n)*dt/2) - c*dt*z(n)
    Parameters are dt, a, b, and c.


MANDEL
 

JULFN+EXP
 

JULFN+ZSQRD
 

JULIA

JULIA4
 

LORENZ
 

LORENZ 3D
 

LORENZ 3D1
  1 [2][3][4][5] 
      
Copyright 1999-2024 Zeroboard